Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli
نویسندگان
چکیده
Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.
منابع مشابه
Determining the N-terminal orientations of recombinant transmembrane proteins in the Escherichia coli plasma membrane
In silico algorithms have been the common approach for transmembrane (TM) protein topology prediction. However, computational tools may produce questionable results and experimental validation has proven difficult. Although biochemical strategies are available to determine the C-terminal orientation of TM proteins, experimental strategies to determine the N-terminal orientation are still limite...
متن کاملCrystal Structure of Escherichia coli-Expressed Haloarcula marismortui Bacteriorhodopsin I in the Trimeric Form
Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI) D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps,...
متن کاملExpression of E.coli capsular polysaccharide requires the KfiB protein:A Structural based analysis
Abstract Background and objectives: important virulence factor for many invasive bacterial pathogens of humans. Escherichia coli offer a model system to study the mechanisms by which capsular polysaccharides are synthesized and exported onto the cell surface of bacteria. Biosynthesis of the E consists of the repeat structure -4) GlcA- (1, 4)-GlcNAc- (1-, requires the KfiA,...
متن کاملExpression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein.
We are testing a strategy for creating three-dimensional crystals of integral membrane proteins which involves the addition of a large soluble domain to the membrane protein to provide crystallization contacts. As a test of this strategy we designed a fusion between the membrane protein bacteriorhodopsin (BR) and the catalytic subunit of aspartyl transcarbamylase from Escherichia coli. The fusi...
متن کاملSpecific cellular water dynamics observed in vivo by neutron scattering and NMR.
Neutron scattering, by using deuterium labelling, revealed how intracellular water dynamics, measured in vivo in E. coli, human red blood cells and the extreme halophile, Haloarcula marismortui, depends on the cell type and nature of the cytoplasm. The method uniquely permits the determination of motions on the molecular length (approximately ångstrøm) and time (pico- to nanosecond) scales. In ...
متن کامل